Higher fractional differentiability for solutions to a class of obstacle problems with non-standard growth conditions

نویسندگان

چکیده

Abstract We here establish the higher fractional differentiability for solutions to a class of obstacle problems with non-standard growth conditions. deal case in which satisfy variational inequality form ∫ Ω stretchy="false">⟨ mathvariant="script">A ⁢ stretchy="false">( x , D u stretchy="false">) φ - rspace="4.2pt" stretchy="false">⟩ mathvariant="italic" rspace="0pt">d ≥ 0 separator="true"> for all ∈ mathvariant="script">K ψ \int_{\Omega}\langle\mathcal{A}(x,Du),D(\varphi-u)\rangle\,dx\geq 0\quad\text{for all}\ \varphi\in\mathcal{K}_{\psi}(\Omega), where Ω is bounded open subset mathvariant="double-struck">R n \mathbb{R}^{n} , W 1 p \psi\in W^{1,p}(\Omega) fixed function called and = stretchy="false">{ w : a.e. in stretchy="false">} \mathcal{K}_{\psi}(\Omega)=\{w\in W^{1,p}(\Omega):w\geq\psi\ \text{a.e. in}\ \Omega\} admissible functions. Assuming that gradient belongs some suitable Besov space, we are able prove property transfers solution.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regularity Results for a Class of Obstacle Problems under Non Standard Growth Conditions

We prove regularity results for minimizers of functionals F(u, Ω) := Ω f(x, u, Du) dx in the class K := {u ∈ W 1,p(x)(Ω,R) : u ≥ ψ}, where ψ : Ω → R is a fixed function and f is quasiconvex and fulfills a growth condition of the type L−1|z|p(x) ≤ f(x, ξ, z) ≤ L(1 + |z|p(x)), with growth exponent p : Ω → (1,∞).

متن کامل

INFINITELY MANY SOLUTIONS FOR A CLASS OF P-BIHARMONIC PROBLEMS WITH NEUMANN BOUNDARY CONDITIONS

The existence of infinitely many solutions is established for a class of nonlinear functionals involving the p-biharmonic operator with nonhomoge- neous Neumann boundary conditions. Using a recent critical-point theorem for nonsmooth functionals and under appropriate behavior of the nonlinear term and nonhomogeneous Neumann boundary conditions, we obtain the result.

متن کامل

On the existence of nonnegative solutions for a class of fractional boundary value problems

‎In this paper‎, ‎we provide sufficient conditions for the existence of nonnegative solutions of a boundary value problem for a fractional order differential equation‎. ‎By applying Kranoselskii`s fixed--point theorem in a cone‎, ‎first we prove the existence of solutions of an auxiliary BVP formulated by truncating the response function‎. ‎Then the Arzela--Ascoli theorem is used to take $C^1$ ...

متن کامل

A Hölder continuity result for a class of obstacle problems under non stan - dard growth conditions

A Hölder continuity result for a class of obstacle problems under non standard growth conditions Michela Eleuteri and Jens Habermann Michela Eleuteri, Dipartimento di Matematica di Trento via Sommarive 14, 38100 Povo (Trento) Italy; e-mail: [email protected] Jens Habermann, Department of mathematics, Friedrich-Alexander University, Bismarckstr. 1 1/2, 91054 Erlangen, Germany; e-mail: ha...

متن کامل

Solutions for some non-linear fractional differential equations with boundary value problems

In recent years, X.J.Xu [1] has been proved some results on mixed monotone operators.  Following the paper of X.J.Xu, we study the existence and uniqueness of the positive solutions for non-linear differential equations with boundary value problems. 

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Calculus of Variations

سال: 2022

ISSN: ['1864-8258', '1864-8266']

DOI: https://doi.org/10.1515/acv-2021-0074